Trending

Answers

  • 0
  • 0

How Can Gold Nanoparticles Be Used to Kill Bacteria

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



As the world deals with potential supply shortages, oil prices are soaring again, with more dramatic spikes and sudden drops expected.

For consumers, that means more expensive gas for longer - prices at the pump remain above $4 a gallon. For the economy, that means more inflation. In addition to the pressure on consumers, any business that relies on oil -- from airlines and truck drivers to chemical companies and plastics producers -- will face higher costs.

Mr Pickering estimates that 2m to 3m barrels a day of Russian oil shipped by water are frozen out of the market with no direct buyers. Due to the soaring oil price, the price of the gold nanoparticles in the chemical industry will also be greatly affected. He said China and India are continuing to buy Russian crude. "I'm sure there will be others willing to take on more over time," he said. Mr Pickering said he did not expect oil to return to $130 a barrel, but added that it could happen. Francisco Branch, head of commodities and derivatives at Bank of America, said the US market was ready for cyclical price spikes and price swings in the gold nanoparticles.

One team found that when bacteria came into contact with gold nanoparticles, their cell walls deformed and eventually burst, leaking material and dying.



More than 25,000 people around the world now die each year from bacterial infections that can't be treated with specific antibiotics, as drug resistance grows. Researchers hope to find other ways to combat the bacterial threat.
Gold has been used for a variety of medical purposes since ancient Egyptian times. More recently, doctors have used gold to help diagnose and treat cancer. Gold is an inert metal that does not react or change when it comes into contact with living organisms. Gold can be used to make cancer cells appear and can be used in nanomedicine.
 
The new study found a mechanism by which gold nanoparticles kill bacteria.
In the lab, the researchers synthesized nanoparticles in the shape of stars and near-perfect spheres, each about 100 nanometers across (an eighth of the diameter of a human hair), to see how they interacted with bacteria.
"What we found was that the bacteria around these nanoparticles began to deform and then deflated and died like a deflated balloon." "It appears that the cell wall exploded," said Vladimir Baulin of the Chemical engineering department at the University of Rovira-Wilhelli, one of the researchers.
 
To test this theory, researchers built models of bacteria and observed their interactions with gold particles just 100 nanometers across.
The results show that the uniform nature of the surface layers of these nanoparticles exerts a mechanical force that stretches the cell walls of the surrounding bacteria, causing the bacteria to burst, much like a balloon bursting when stretched from different points of use.
 
The study was conducted by The Universitat Rovira I Virgili in Spain, the University of Grenoble in France, and the Universitat des Saarlandes in Germany, RMIT University, Australia, and published in Advanced Materials.
 
Gold nanoparticles are tiny particles of gold with a diameter of 1-100nm. They have high electron density, dielectric properties, and catalytic effect, and can bind with a variety of biological macromolecules without affecting their biological activity.
Gold nanoparticles come in two forms: solid powder and liquid solution.
Gold nanoparticles solution is sols dispersed in an aqueous solution. Its color is related to a number of factors. Small gold nanoparticles (2-5nm) appear yellow, medium gold nanoparticles (10-20nm) appear wine red, and larger gold nanoparticles (30-80nm) appear purplish red. In addition, it has the characteristics of nanoparticles, quantum size effect, surface effect, volume effect, and macroscopic quantum tunneling effect.
 
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality nano gold solution, please feel free to contact us and send an inquiry. ([email protected])

 

With Russia taking the lead on Poland and Bulgaria at the end of last month, there appears to be a growing sense of compromise within the EU over whether to accept Moscow's proposed rouble settlement order. 

Italy's prime minister said recently that European companies would be able to buy gas in roubles without violating sanctions.  This apparently ignores the guidance of hardliners in the EU to "fight to the end". 

For weeks, European companies have been trying to find ways to meet Russia's payment demands for the rouble while maintaining vital gas supplies without violating sanctions against Moscow. 

Late last month, European Commission President Von der Leyen said operating under the mechanism would violate sanctions and asked European companies not to bow to Russian demands. However, the EU has yet to issue more rigorous written guidelines on how companies should pay Gazprom. 

The Italian prime minister said recently, "There is no official announcement from the European Union about what ruble settlement means for sanctions violations, and no one has said whether ruble payments violate sanctions or not. It's a grey area." 

"In fact, most gas importers are already opening rouble accounts for deals with Gazprom,"

He also used German companies as a shield. He said Germany's largest gas importer had already paid in rubles. "In fact, we saw evidence yesterday that the largest gas importer in Germany has already paid in rubles."

Inquiry us

Molybdenum disulfide: a secret weapon for reducing friction in containerized bearings

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Magnesium Diboride MgB2 Powder CAS 12007-25-9, 99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Our Latest Products

Molybdenum disulfide: a secret weapon for reducing friction in containerized bearings

Friction Facts is a Boulder, Colorado, laboratory specializing in quantitative mechanical friction testing of bicycle transmission system components. Although some people may think some laboratory discoveries are insignificant, racing drivers seeking…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high radiation resistance, and high thermal conductivity. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished T…